
1

An Active Queue Management Scheme Based on a
Capture-Recapture Model

Ming-Kit Chan and Mounir Hamdi

Abstract— One of the challenges in the design of
switches/routers is the efficient and fair use of the shared
bottleneck bandwidth among different Internet flows. In
particular, to provide fair bandwidth sharing, different buffer
management schemes are developed to protect the well-behaved
flows from the misbehaving flows. However, most of the
existing buffer management schemes cannot provide accurate
fair bandwidth sharing while being scalable. The key to the
scalability and fairness of the buffer management schemes is
the accurate estimation of certain network resources without
keeping too much state information.

In this paper, we propose a novel technique to estimate two
network resource parameters: the number of flows in the buffer
and the data source rate of a flow by using a capture-recapture
model. The capture-recapture model depends on simply the
random capturing/recapturing of the incoming packets, and as a
result, it provides a good approximation tool with low time/space
complexity. These network resource parameters are then used
to provide fair bandwidth sharing among the Internet flows. Our
experiments and analysis will demonstrate that this new technique
outperforms the existing mechanisms and closely approximates
the “ideal” case where full state information is needed.

Index Terms— Active queue management, capture-recapture
model, fair bandwidth sharing

I. INTRODUCTION

THE INTERNET depends on the cooperation between TCP
senders and subnet routers to adjust the source data rates

in the presence of network congestion along the path of the
TCP flow. Currently, buffer management schemes are used
in the Internet routers to indicate congestion to edge hosts,
while the buffer management algorithms can be classified into
two categories: Passive Queue Management (PQM) and Active
Queue Management (AQM). The drop-tail scheme is one of
the PQM algorithms. Using drop-tail, the packet that arrived
most recently (the one on the tail of the queue) is dropped
when the queue is full. This signals congestion to the sources.
Although drop-tail schemes are easy to implement and fit
within the best-effort nature of the Internet, however, drop-tail
had a number of problems. For example, TCP sources may
send packets in bursts, so drops occur in bursts as well. It
causes the TCP sources to slow start its sending rate. Moreover,
synchronization between various sources could occur, they
eventually use the bandwidth in periodic phases, leading to
inefficiencies. In contrast, a proactive approach called Active
Queue Management (AQM) provides a better solution. AQM
informs the sender about incipient congestion before a buffer
overflow happens so that senders are informed early on and can
react accordingly. By dropping packets before buffers overflow,
AQM allows routers to control when and how many packets
to drop. By keeping the average queue size small, AQM will
accept bursts without dropping packets and will also reduce the
delays seen by flows. For the same reason, AQM can prevent

a router bias against low bandwidth but highly bursty flows.
Random Early Drop (RED) is the best-known AQM approach,
which is designed to operate with protocols that treat drops as
indications of congestion. As a result, RED is widely used for
the TCP-dominated Internet.

Although RED is simple to implement, it cannot prevent
an unresponsive flow from occupying most of the bandwidth.
A TCP host, which has experienced congestion on a net-
work, will wait for an amount of time before attempting to
retransmit. However, a source that does not backoff (e.g., UDP
source) when there are packet drops, and will end up causing
the others (e.g., TCP sources) to slow start and occupy the
available bandwidth. Furthermore, responsive flows with high
round trip times (RTTs) can still receive significantly less
bandwidth than responsive flows with low round trip times.
To illustrate this problem in current Internet architecture, a
recent study of the Internet traffic trace [3] shows that nearly
1% of Internet flows occupy about 80% of the bytes and
64% of packets. Moreover, there are about 96% of the bytes
and 84% of the packets came from just 10% of the flows.
These small portions of flows are clearly unresponsive and
not responding to the traffic congestion signals. With a high
amount of UDP flows, the network bottleneck (for example,
the hub of the Internet backbone) will suffer from a lack of
capacity because these misbehaving flows will have already
occupied most of the bandwidth. In addition, according to the
Slow Start mechanism, TCP traffic will cut its transmission
rate by half in response to the traffic congestion. This results
in starvation of TCP traffic while most of the Internet traffic
such as WWW and FTP are transmitted using TCP. Therefore,
a lot of research was dedicated to finding AQM schemes that
would be simple to implement and partition the bandwidth
fairly. In the past, although several AQM algorithms targeting
the fair bandwidth sharing among different flows have been
proposed [1][3][4][11], their implementation in routers have
not been realized because of scalability, quality of solution,
and/or complexity problems. In the following section, we will
present the problems of developing a fair bandwidth sharing
AQM algorithm and our proposed solution to it.

One possible existing solution is to separate flows into
different queues, for example, Fair Queueing [6], Weighted
Fair Queueing [7], and Generalized Processor Sharing [8].
They are defined in terms of a fluid flow model. Packets are
assumed to be infinitely divisible and servers are able to serve
multiple packets at the same time. A fair queueing scheduler
thus provides ideal fairness. For the same reason, to give a fair
bandwidth allocation for all connections, it is reasonable for an
AQM scheme to separate all incoming packets into different
queues according to their flows. Obviously, it yields better
performance in terms of fairness because it is able to provide

2

the same share of output for each separated queue and the
bandwidth can be shared equally among all the flows. However,
such AQM solutions [11] for providing fair bandwidth sharing
require routers to store per flow states, and to perform per flow
operations and per flow classification. As there are millions of
active connections in the core of the network (e.g., Web mice),
and hence routers must keep the state information for all of
these connections. This makes such schemes less scalable than
stateless schemes and unlikely to be implemented in a router.

On the other hand, it is possible to provide fair bandwidth
sharing without keeping any per-flow states. Such designs
are called the “stateless” architecture. However, the services
provided with current stateless architectures [12][10] have little
flexibility, low utilization, and/or fairness level as compared to
the services that can be provided with per flow mechanisms. As
a result, some existing schemes [3][4] have been proposed to
approximate fairness among flows by keeping states for some
flows only. In this paper, we propose a novel AQM scheme,
called CARE, that belongs to this class of algorithms (requires
small bounded number of states), but can provide fair band-
width sharing similar to those that can be provided with per
flow mechanisms. In this way we can simultaneously achieve
high Quality of Service, high scalability and robustness. The
key technique we use is called the capture-recapture (CR)
model, which provides an accurate estimation of the number of
active flows and data source rates with the help of a random
packet capturing process. A series of simulation results are
provided to prove that this novel technique makes significant
improvement over state-of-the-art AQM schemes.

The paper is organized as follows: the next section describes
the existing AQM schemes targeting the fair bandwidth sharing
problem. Section III introduces the methodology of the capture-
recapture (CR) model. Different structures of the CR model are
also presented. Section IV describes the mechanism of CARE
in details. In Section V, we compare the performance of CARE
and the existing AQM schemes. We also present additional
useful properties of CARE. Finally, a brief conclusion will be
given in Section VI.

II. RALATED WORK

Throughout the years, researchers have developed various
buffer management schemes in an attempt to solve the fair
bandwidth sharing problem. In this section, we will present
several key buffer management schemes (keeping a small state
information) in this area, they are: Stabilized RED (SRED)[1],
RED with Preferential Drop (RED-PD)[3], and Stochastic Fair
Blue (SFB)[4]. The SRED is a buffer management mechanism
intended to estimate the number of active flows (connections).
Its main idea is simple: compare each arriving packet with
a randomly chosen packet that preceded it into the buffer. If
both packets are of the same flow, declare a “hit”. The level
of hit not only estimates the number of active flows but also
helps finding the candidates for a misbehaving flow. The drop
probabilities are then adjusted according to the number of ac-
tive flows. Although SRED provides a mechanism to estimate
the number of active flows, identify misbehaving flows, and
controls buffer occupancy by adjusting the drop probabilities
using the estimated number of active flows, only TCP flows
are assumed for the SRED algorithm. The experimental results

in Section V also show that SRED cannot estimate the number
of flows accurately in the presence of UDP traffic.

To address the problem of the UDP traffic, RED with
Preferential Drop (RED-PD) tries to identify the aggressive
flows by a identification engine. With the belief that a small
number of flows occupy most of the bandwidth; RED-PD
identifies a number of high bandwidth flows by means of a
identification process. It takes the number of monitored flows
into account for its dropping decision. The dropping probability
of all montiored flows are adjusted and so that the sending rate
of them can be bounded by a prdefined target RTT. RED-
PD also provides evidence to show the drop history of a
given flow is an indicator of its sending rate. By deploying
this idea, an estimation of rate is achieved by counting the
occupancy of packets in a drop history buffer. The identification
engine first analysis the drop history buffer and monitors the
high rate flows, where the drop history buffer contains drop
records derived from the original RED gateway. Once a packet
is dropped by RED, its flow ID is recorded into the drop
history buffer. As the rate of a flow is represented by the
number of drops in the drop history buffer, the buffer is divided
into

�
drop lists to avoid the effect of consecutive drops.

Hence, the flow with high sending rate should appear among
several drop lists instead of concentrating in one or two drop
lists. The identification process is trigger when the timeout
occurs. Then the RED-PD scans the drop history buffer, if a
flow appears in at least � of the

�
drop lists (� is also a

predefined constant), this flow will be monitored. The dropping
probability associated with this flow will also be increased. If
a monitored flow does not appear in any of the drop lists,
the dropping probability associated with that monitored flow
will be decreased. If the dropping probability of any monitored
flow is less than a predefined level called ����� �	��
����� , the
flow will be released from monitoring. As a result, giving
higher dropping probability for the monitored flows, the RED-
PD provides fair sharing of the bandwidth among the flows.
However, the threshold or the fair share in the drop history
buffer is calculated by a predefined constant. As a result, the
algorithm itself cannot adapt to different network setups.

On the other hand, Stochastic Fair Blue (SFB) is a bandwidth
sharing scheme using the BLUE [19] algorithm. BLUE is
an active queue management algorithm handling congestion
control by observing the packet loss and the link utilization
history instead of the queue occupancy. BLUE maintains
a single probability, ��� , to drop packets. If the queue is
continually dropping packets due to buffer overflow, BLUE
increases � � . However, if the queue becomes empty or if the
link is idle, BLUE decreases its � � . This makes BLUE adjust
dropping packets. Based on BLUE, Stochastic Fair Blue (SFB)
is a technique for protecting TCP flows against non-responsive
flows, SFB maintains ����� bins. The bins are organized in
� levels with � bins in each level. Hash functions are used to
map a flow into one of the � accounting bins. Each bin in SFB
keeps a dropping probability ��� as in BLUE. If the number
of packets mapped to a bin goes above a certain threshold, ���
for the bin is increased. However, simulation results show that
SFB cannot provide a high degree of fairness. We will present
the results in Section V.

3

III. THE CAPTURE-RECAPTURE MODEL

The original objective of the capture-recapture (CR) [9]
model is to estimate the number of animals in a population.
Animals are first captured, marked and released. Then they
are recaptured again. A number of marked animals among
those recaptured determine the size of the population. The
model is widely used by biologists, ecologists, and even
computer scientists. It has already been applied in the filed
of computer science, for example, the CR model has been
used to find the number defects in the field of software
engineering [13][14][15]. Instead of catching all the animals,
the CR model provides a simple approach to estimate the size
of the population in an effective way by means of several
simple ideas: capture, mark, and recapture. In the following,
we focus on the methodology based on two variants of the CR
model called the

���
CR model and the

���
CR model.

A.
� �

Capture-Recapture Model

The
� �

CR model is the most basic form of the CR model.
The model assumes a constant capture probability for all the
animals, where the capture probability refers to the chance
of individual animals being caught. Therefore, the

� �
model

assumes that the capture probabilities for all animals are the
same and the effect of capture probabilty is insignificant. The
model derives the estimation of the total population size as
follows: Suppose that there are ��� animals captured from the
population and all of them are marked. Let ��� be the number
of recaptured animals. The

���
CR model defined that the

proportion of marked animals found among the recaptured
animals is the same as the proportion of the captured animals
to the population. As a result, the size of population (�) is
estimated using the following equation:

� �
�	�

 � �
�

where ��� is the number of animals appeared to be marked
among the recaptured animals.

We apply the same idea to the development of a new Active
Queue Management scheme. By using the

���
CR model, we

can estimate the sending rate of individual flow. Assume that
there is a buffer, which stores recently arrived packets. The
total number of packets in the buffer can be treated as total
population of the animals. Thus, the estimation of packets for
a certain flow in the buffer can be treated as the estimation of
animals. As a result, we can estimate the source data rate of a
certain flow by using the

� �
CR model. We will demonstrate

the mechanism in Section IV.

B.
� �

Capture-Recapture Model

Now we consider the case where the capture probability are
different among the animals. In some circumstancess, capture
probabilities may vary by animal, for reasons like differences
in species, sex, or age. To achieve an accurate approximation
under different capture probabilities, a new approach called

� �
CR model should be used. Unlike the

� �
model, the

� �
model

can have as many as � +1 parameters: � and � �� � ��������� ��� ,
where ��� is the capture probability for an individual animal �
and � is the size of the total population. Estimating these many

parameters from the capture-recapture data is not possible.
In order to solve this problem, the jackknife estimator is
used to estimate � without having to estimate all the capture
probabilities [16]. To increase the accuracy of the estimation,
multiple capture occasions are adopted. In fact, the major
different between

� �
CR model and

� �
CR model is the

number of capture occasions performed. For the
� �

model,
two capture occasions 1 are performed where the number of
captures in the first capture occasion is � � and the number of
captures in the second capture occasion is � � . On the other
hand, we could have � capture occasions for the

���
model,

where the number of captures of each capture occasion are
��� , �	� , ... ��� respectively. Another difference between

���
CR

model and
���

CR model is the input parameters used. For
the

���
model, the number of captures (��� and �	�) are used

estimate the total population. For the
���

model, however, the
capture frequency data are used to ease the effort of estimating
the capture probabilities �	� ��� ������� � � . Hence, estimation of �
under the

� �
model is based on the capture frequency data� �� � ��������� � � where

� � is the number of animals caught only
once,

� � is the number of animals caught only twice, ... etc.
In order to compute � from a set of capture frequency data,
the jackknife estimator (�! �") is used and it is computed as a
linear combination of these capture frequencies, such that:

� �"
$#&% � �(')� � �+* #�% � �,'-� � �.* ����� * #&% � �('-� � �
where #&% � �('/� are the coefficients which are in terms of the
number of capture occasions (�) and � represents the order of
the estimation, if � increases, the bias of � �" will decrease
but the variance of � �" will increase. Choosing an optimal
� requires the hypothesis testing.

Using the
� �

CR model, we need only two pieces of
information in order to estimate the population: the capture
frequency (

� �) and the number of capture occasions (�), but
not the capture probabilities (� �).

To illustrate the estimation process, we will give an example
in the following paragraph. In fact, the estimated process is
complicated, and is intentionally omitted here in order not to
put the paper out of focus. For more details, the reader is
referred to [16].

Let us consider an example of applying the
���

CR model
in [16]. For example, animals are captured in 18 days (� =18)
and the capture frequency (

� �) for these animals are shown in
Table I. As illustrated in Table I, there are 43 and 16 animals
captured once and twice respectively. Firstly, we derive the
coefficients #&% � �(' � to #&% � �(' � according to � for � = 1 to
5. Then, by putting the capture fequency data (

� �) into the
jackknife estimators, we got �! � to �0 �1 as shown in Table II.
Next, we compute an interpolated estimator between ��243 and
� , where � is the first order that the significance level � �65
0.05. Finally, If � =1, we take � � as the estimator, otherwise,
we take the interpolation between � 87 �:9	�-; and � � as the
estimator. In this example, � is calculated as 3, such that we
interpolate � � and � �< . The resultant estimator as 142.

1For the =0> CR model, the first capture occasion is referred as ?-@)A�BDC�EGF
while the second capture occasion is referred as EGFH?-@/A�BDC�EGF .

4

TABLE I

CAPTURE FREQUENCY DATA

�
1 2 3 4 5 6 7 8���
43 16 8 6 0 2 1 0

TABLE II

JACKKNIFE ESTIMATOR IN ORDER 1 TO 5

Order(�) Jackknife estimator (���	�)
0 76
1 116.6
2 141.5
3 158.6
4 170.3
5 176.5

IV. A BUFFER MANAGEMENT SCHEME USING THE CR
MODEL

In general, fair bandwidth sharing schemes should provide
the following functions: the estimation of the sending rate
of individual flows, the estimation of the fair share, and the
mechanism of flow rate adjustment. Based on the data rates
and fair share, packets are dropped (or marked) according to
the adjustment process. Hence, a scheme with an accurate
estimation of the flow sending rate and an appropriate fair
share guarantee a good fair bandwidth sharing mechanism.
In this section, we propose a novel technique, called CARE
(CApture-REcapture fair sharing), for estimating the source
data rates and the fair share using the capture-recapture (CR)
model. The capture-recapture model depends on simply the
random capturing/recapturing of the incoming packets, and
as a result,it provides a good approximation tool with low
time/space complexity. Similar approach is also adopted by
SACRED [20]. SACRED samples incoming packets randomly
and stores their stat information into a cache, which maintains a
counter for each entry to estimate the sending rate of a sampled
flow. If a flow has a sending rate higher than the fair share, the
dropping probability of this flow is increased. The fair share
is pre-defined by a constant called
 � � � �+2 ��� #
�� �	��
�������
�� .
The cache location of each sampled packet is computed using
the function (source address XOR destination address) MOD
(number of cache entries may suffice). Since a cache location
may has been used by another flow, so only flow with low
sending rate can be replaced. The motivation of SACRED is
to store the flow state information in random basis to estimate
the sending rate of the sampled flows. However, some flows
may be missed if multiple flows are hashed into the same cache
location . SACRED does not address the problem of estimating
the fair share, which is an important information for its QoS
enhancement scheme.

Following the concepts of CR model explained in the pre-
vious section, our technique has been shown to provide highly
accurate estimations while involving low computational cost.
We will discuss the details of the mechanism in the following.

A. Estimating the fair share by using the
���

CR model

Firstly, let us discuss the estimation of the fair share.
Consider a buffer, which stores the recently arrived packets,
is used for the estimation of the network parameters. Assume

that all senders are aggressive enough to occupy the available
bandwidth. Therefore, each flow should occupy no more than
a fixed number of packets or the fair share size (�) in the
buffer in order to receive equal proportion of the bandwidth.
If a flow has occupied more than the fair share, packets of this
flow should be dropped to leave space for the other flows. In
this case, � can be calculated as follows:

�
��
�

where � is the buffer size and � is the total number of flows
in the buffer.

As � is a predefined value, estimating the appropriate value
of � requires the estimation of the number of flows (�) in the
buffer. Moreover, in [1] and [2], the estimation of the number
of flows has been shown to be an important information for
an AQM mechanism. Based on the

���
CR model, we can

estimate � by considering the total number of the flows in
the buffer as the total of the animals in the population. For
example, there are � flows in the buffer and � � represents the
number of packets in the buffer having flow ID number 3 , and
so forth, such that the buffer should contain � � *�� � * ����� *�� �
packets. If we capture a random packet in the buffer, the chance
of flow � ’s packet being caught is:

���
 � �% � � *�� � * ����� *���� '
where � � denoted the capture probability of the flow �

As the data rate of different flows are different, for instance,
TCP flows have fluctuate sending rate. Hence different flows
may occupy the buffer by different amounts, therefore � ���
 ���
for � �
�� and the capture probabilities (���) vary by flow. To
approximate the number of flows (�) in the buffer, we choose���

CR model as our estimation model. In practice, we capture
packets from the buffer in order to get a set of flow IDs.
Then we construct the capture frequency data (

� � � � ������ � �)
according to the captured flows. Finally, the jackknife estimator
is used to estimate the number of flows in the buffer. Instead of
scanning the whole buffer to find the number of flows exists in
the buffer, the

� �
CR model guarantees an accurate estimation

with low complexity.
The traditional capture-recapture relies on a random cap-

turing process, such that the number of captured animals in
a certain capture occasion is not determined. However, for
capturing packets in the buffer, we have to determine the
number of captures in each capture occasion (��� �	� ������ ���).
The total number of captures is therefore � � ����� �	� where �
denoted the number of capture occasions. For simplicity, we
define ���
 �	�
 �����
 ���
 3 2. As a consequence of that,
the total number of captures and the accuracy of the estimation
depend on the value of � only.

In conclusion, the estimation process using the
� �

CR
model is as follows:

1) Capture � packets from the buffer

2A sampling technique, such as the capture-recapture model, increases its
accuracy of the estimation with the number of samples (captures). Hence, the
accuracy of the estimation increases with either B , � or both of them. As
a result, the effect of using different values of � can be replaced by using
different values of B and vice versa. Therefore, we assume � to be constant
and equal to 1 for simplicity.

5

2) Construct a set of capture frequency data by observing
the flow ID of the captured packets

3) Estimate the total number of flows in the buffer using
the jackknife estimator

As mentioned at the beginning of this section, we set up
a buffer that stored recently arrived packets to estimate the
number of flows in the buffer. In fact, the implementation of
CARE does not require to store all the recently arrived packets
in the phsical memory. Conceptually, these packets may be
considered as stored in a ”virtual buffer”. The virtual buffer
does not exist, but it is useful for illustrating the solution.
Instead of storing all the incoming packets, we store only the
captured packets in order to save the space required for the
CARE algorithm. In particular, we pick an incoming packet
with a probability (�������) and store the packet in a circular
linked list called ”capture list”. Therefore, on average, one
packet is captured per �

���	��
 incoming packets. Assume that we
want to capture � packets from the virtual buffer which stored �
recently arrived incoming packets. In this case, the probability
������� is � . The size of the capture list depends on the total
number of captured packets. Since the total number of captured
packets for estimating the number of flows is � , so the size of
the capture list should not be less than � where � is the number
of capture occasions. Moreover, the accuracy of the estimation
decreases with the decrease of the probability � ����� because
it leads to the increase of � , such that we actually captured
the same number of packets in a larger buffer. Together these
information, we modify the previous estimation process as
follows:

1) Pick an incoming packet with the probability ������� and
store the packet in the ”capture list”

2) Construct a set of capture frequency data by observing
the flow ID of the packets existing in the ”capture list”

3) Estimate the total number of flows in the buffer using
the jackknife estimator

B. Estimating the sending rate by using the
���

CR model

Next, we consider the estimation of source data rates. The
sending rate of a certain flow can be represented by the packet
counts of the flows in the virtual buffer. One possible solution
is to use an array of counters to store the actual number of
packets for all the flows going through the router: once a packet
with flow ID � is entered, the counter of index � of the array is
incremented. When it leaves from the router, the counter with
index � is decremented. However, the size of the array limits
the number of flows going through the router. The memory
used for this approach is not determined. Instead of storoing
this information all the time, CARE estimates the flow sending
rate if required. As a result, our goal is to estimate the number
of packets belonging to a certain flow in the virtual buffer
by using a capture-recapture model, particularly, the

���
CR

model. Consider the following example: Assume that all the
packets with flow ID � are captured and marked when they
arrive, so that � � is the number of captures, and it is also
the number of packets in the buffer with flow ID � . � is the
size of the virtual buffer. In fact, the marking procedure is not
required. We may treat the mark as the flow ID in the packet
header. Therefore, ��� can be estimated by using the equation

TABLE III

COMPARISON BETWEEN TRADITIONAL =�� CR MODEL AND THE =�� USED

IN CARE

Traditional CR Model Estimation of the fair share
using the

� � CR model
Estimating the total number
of animals in the population

Estimating the total number
of the Internet flows in the
buffer

The number of animals cap-
tured are ����������������������� for �
capture occasions

The number of packets cap-
tured are 1 for � capture oc-
casions

Captured aimals are marked Capture packets are stored in
the ”capture list”

which solves the
� �

model, we modified the original equation,
such that:

���
 � � � �
� �

where � � is the number of the recaptured packets, and � �
is the number of the marked packets among the recaptured
packets. Hence, the process of estimating the number packets
belongs to flow ID � is as follows:

1) Capture � � packets from the buffer
2) Count the number of packets with flow ID � , and let it

be � �
3) The estimation � � is calculated if the buffer size � is

given

For instance, if we capture 10 packets and 3 of them have
flow ID � , then there should be approximately 30 packets
having flow ID � in a buffer of size 100. Moreover, To
avoid having multiple captures by the estimations, the capture
information is used for both the estimation of fair share, and the
estimation of source data rates. Therefore, the packets stored
in the ”capture list” is used.

In conslusion, we modify the previous estimation process as
follows:

1) Pick an incoming packet with the probability � ����� and
store the packet in the ”capture list”

2) Count the number of packets with flow ID � in the
capture list, and let it be � �

3) The estimation � � is calculated if the buffer size � is
given

As mentioned in the previous subsection, the capture list
stores � packets which are captured among a virtual buffer of
the size � , such that we replace ��� with the size of the capture
list (�) and the original equation with �+�
 � � �"!�

Finally, based on the previous analysis, an Active Queue
Management scheme, called CARE (CApture-REcapture fair
sharing), is developed. Although the nature of the traditional
CR model and the AQM algorithms are different, simulation
results show that CARE is found to be useful in providing fair
banding sharing.

To illustrate the difference between our application of CR
model and the traditional one, Table IV and Table III show the
relationship between the traditional CR model, the CR model
used for the estimation of the fair share, and the CR model
used for the estimation of the source data rates.

6

TABLE IV

COMPARISON BETWEEN TRADITIONAL = > CR MODEL AND THE =0> USED

IN CARE

Traditional CR Model Estimation of the source data
rates using the

� > CR model
Estimating the total number
of animals in the population

Estimating the total number
of the packets belonging to a
certain flow in the buffer

The number of animals cap-
tured and recaptured are � �
and ��� respectively

The number of packets cap-
tured and recaptured are �
and ��� respectively

Captured aimals are marked Capture packets are not re-
quired to marked

Identify the number of marks
among the recaptured ani-
mals

Identify the number of pack-
ets has a certain flow ID
among the recaptured packets

C. Adjustment mechanism

An important component of CARE is the rate adjustment
mechanism. One possible approach would be CSFQ’s [10]
adjustment mechanism. Under the ideal situation, the resul-
tant throughput of each flow should be as fair as possible.
Therefore:

 # � � � � % 3 2 � � '
 � # ��
 ��� #
�
where
 # � ��� is the sending rate for flow � and, � � is the ideal
dropping probability for flow � . Upon each packet arrival we
apply the dropping probability � �
 3 2 � # ��
 ��� #
����
 # � � .
Finally, based on the pseudocode, the CARE module is built
and a series of simulation results are presented in the following
Section.

D. Implementation

For completeness, we give the pseudocode of the CARE
algorithm in the following:

For_each_incoming_packet {

// size of the virtual buffer
B = 1/p_cap * t;

// capture the incoming packet randomly
if(p_cap > unif_rand(0, 1)) {

capture_list[i] = flowID;
i = (i + 1) % t;

}

// sending rate estimation
m_2 = count_marks(capture_list);
rate = B * m_2 / t

// Fair share estimation
f_i = frequency(capture_list);
n = jackknife(f_i);
S = B / n;

// Adjustment mechanism
if(rate > S)

drop_prob = 1.0 - (S/rate);
else
drop_prob = 0.0;

}

- � : The size of the virtual buffer
- ������� : The probability of capturing incoming packets

- � : The number of capture occasions
- 	�� ��
 : Estimated sending rate
-
� �

: Capture frequency data
- � : The estimated number of flows
- � : Fair share size

V. PERFORMANCE EVALUATION

A. Simulation setup

In this section, we evaluate the performance of CARE and
compare it with the existing AQM mechanisms. We use ns-2
[17] for our simulation. The network topology is a dumbbell.
By default in our simulations, the capacity of the congested
link is 10Mbps, while the link speed is 100Mbps for the others.
Link latencies for all the links are 2.0msec. The packet size
for all the traffic is 1000 bytes. To give a more comprehensive
and practical result, we use a mixture of TCP flows for
each simulation: 10% of TCP flows are at 10.0 msec latency,
10% of TCP flows are standard TCP, 10% of TCP flows
with Binomial [18] parameters (1.0, 0.5, 0, 1), 10% of TCP
flows with Binomial parameters (1.5, 1.0, 2, 0). We have also
modified the TCP’s Additive-Increase/Multiplicative Decrease
(AIMD) parameters. There are 20% of TCP flows with AIMD
parameters (2, 0.5), 20% of TCP flows with AIMD parameters
(0.75, 0.31), and 20% of TCP flows with AIMD parameters
(1, 0.9). In order to evaluate different kinds of traffic, a non-
responsive constant rate flow (e.g., UDP flow) which occupies
10% of the bottleneck bandwidth is injected into the network.
The UDP source has the greatest flow ID. For the parameters
of CARE, the number of capture occasions is 200 (50 for the
estimation of the number of flows), the number of captures
per occasion is 1, and the probability of capturing incoming
packets (� �����) is 0.04. We run each of the simulations for 10
minutes (600 seconds), while the results of the first 100 seconds
are dropped.

In the first set of simulations, we compare the estimation
of flows between CARE and Stabilized RED (SRED). In the
second set of simulations, we compare the actual throughput
for CARE, SRED, Stochastic Fair Blue (SFB), RED with
Preferential Drop (RED-PD) and RED. Finally, we analysze
CARE by varying the number of capture occasions used and
the UDP load injected. We also compare the time complexity
of the CARE algorithm and the existing AQM schemes.

B. Estimating the number of flows

First, we compare the ability of estimating the number of
flows between CARE and SRED (SRED uses the estimated
number of flows to provide fair sharing). We simulate the
network with 41, 51, 61, and 71 flows where each of the
setups contains a UDP flow as described at the beginning of
Section V. Total number of flows is fixed during the simulation
time. Fig. 1 shows the simulation result.

The result indicates that CARE provides more accurate
estimation than SRED does. Next, to evaluate the robustness
of CARE, we vary the total number of flows with time to see
how CARE responds to the change of the total number of flows.
We evaluate CARE and SRED with variable number of flows.
Flows are injected and released from time to time. The simu-
lation result shows the responsiveness of the algorithm against
the change of the number of flows in the buffer. We have also

7

20

30

40

50

60

70

80

90

20 30 40 50 60 70 80 90

E
st

im
at

ed
 n

um
be

r
of

 fl
ow

s

Actual number of flows

Ideal
SRED
CARE

Fig. 1. Estimation of fixed number of flows.

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

E
st

im
at

ed
 n

um
be

r
of

 fl
ow

s

Time

SRED
CARE

Ideal

Fig. 2. Estimation of variable number of flows (30% UDP load).

run similar simulations with different loads of the UDP traffic.
For Fig. 2, Fig. 3, and Fig. 4, the UDP load used are 30%,
10% and 0% of the bottleneck link bandwidth respectively. As
can be seen, in both cases, the CARE algorithm adjusts itself
much better to traffic fluctuations than SRED.

C. Throughput comparison

Here, we compare the throughput of each flow using CARE,
SRED, Stochastic Fair Blue (SFB), RED with Preferential
Drop (RED-PD) and RED in Fig. 5 through Fig. 8 (The graphs
have been separated for clarity). There are 25 TCP sources
and 1 UDP source in the network. The results show that the
CARE algorithm provides better bandwidth sharing than all
other schemes in terms of fairness. In fact, it is very close to
the “ideal” case where complete per flow state information is
needed. Moreover, the goodput of Fig. 5 to Fig. 8 is shown
Table V.

In order to have a better understanding about the perfor-
mance of the algorithms under different network configura-
tions, we evaluate them with 30, 35, 40, 45, 50, 55, 60, 65,
and 70 TCP flows. As in the previous simulations, we added a
UDP flow for each TCP mixture. The sending rate of all UDP
flows is 10% of the bottleneck bandwidth. To illustrate the
performance of different networking setups in a single graph,

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

E
st

im
at

ed
 n

um
be

r
of

 fl
ow

s

Time

SRED
CARE

Ideal

Fig. 3. Estimation of variable number of flows (10% UDP load).

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600

E
st

im
at

ed
 n

um
be

r
of

 fl
ow

s

Time

SRED
CARE

Ideal

Fig. 4. Estimation of variable number of flows (0% UDP load).

TABLE V

GOODPUT OF VARIOUS ALGORITHMS

Algorithm Goodput
Ideal 10Mbps
SRED 9.950528Mbps
SFB 9.995936Mbps
RED-PD 9.97504Mbps
RED 9.994352Mbps
CARE 9.903456Mbps

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

T
hr

ou
gh

pu
t(

M
bi

ts
/s

)

Flow number

CARE
RED
Ideal

Fig. 5. Throughput fairness between CARE and RED.

8

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

T
hr

ou
gh

pu
t(

M
bi

ts
/s

)

Flow number

CARE
SRED

Ideal

Fig. 6. Throughput fairness between CARE and SRED.

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25

T
hr

ou
gh

pu
t(

M
bi

ts
/s

)

Flow number

CARE
RED-PD

Ideal

Fig. 7. Throughput fairness between CARE and RED-PD.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25

T
hr

ou
gh

pu
t(

M
bi

ts
/s

)

Flow number

CARE
SFB
Ideal

Fig. 8. Throughput fairness between CARE and SFB.

0

200

400

600

800

1000

1200

25 30 35 40 45 50 55 60 65 70

N
or

m

Total number of flows

Ideal
RED

SRED
CARE

Fig. 9. Norm Analysis between CARE, SRED, and RED.

0

200

400

600

800

1000

1200

25 30 35 40 45 50 55 60 65 70

N
or

m

Total number of flows

Ideal
SFB

RED-PD
CARE

Fig. 10. Norm Analysis between CARE, SFB, and RED-PD.

we compared the norm of the throughput for each algorithm.
The main purpose of using the norm is to better compare the
fairness between different schemes using a single criteria. Each
of the network simulation results can be evaluated using a
single metric, termed norm; and it is defined by:

� ��
 �
 � �� ��� %�� � 2 � � ' �
where � is the total number of flows, � � is the throughput for
flow � in kbits/sec, � � is the ideal fair share in kbits/sec. With
the norm of the ideal case being 0, the lower the value of norm
means better performance (more fairness). Fig. 9 and Fig. 10
compare the result of the norm values of CARE to that of
SRED, RED, SFB, RED-PD and the “ideal” case. As can be
seen, the norm of CARE is much closer to the ideal case than
the others.

D. Different UDP traffic loads

In the previous simulations, we set the UDP load as 10%
(1Mbit/s) of the bottleneck link bandwidth (10Mbit/s). To
study the effect of UDP load in our simulations, we set up
the pervious simulations again with the injection of different
amounts of UDP traffic. There are 35 TCP flows and 1
UDP flow for each case. Fig. 11 and Table VI show the
performance of CARE and other schemes under different UDP

9

TABLE VI

BANDWIDTH OCCUPIED BY MISBEHAVING TRAFFIC.

UDP load 1% 5% 10% 15% 20% 25% 30%
Ideal 0.100 0.278 0.278 0.278 0.278 0.278 0.278
RED 0.096 0.480 0.957 1.432 1.905 2.377 2.841
SRED 0.096 0.460 0.869 1.250 1.637 2.045 2.370
SFB 0.095 0.123 0.140 0.148 0.153 0.156 0.156
RED-PD 0.094 0.378 0.380 0.350 0.370 0.367 0.369
CARE 0.100 0.315 0.321 0.310 0.332 0.342 0.345

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30

N
or

m

UDP (% of the bottleneck link bandwidth)

Ideal
RED

RED-PD
SFB

SRED
CARE

Fig. 11. Performance of CARE, RED-PD, RED, SFB, and SRED under
different amount of UDP traffic.

loads. Among our samples, only RED-PD, SFB, and CARE do
not suffer from increasing the load of UDP traffic. In particular,
CARE performs the best among these three algorithms.

E. Complexity of the algorithms

The time complexities of all algorithms are summarized in
Table VII. Except for RED, each algorithm we presented in
our simulations required additional state information. However,
instead of keeping states for each of the active flows, all
these AQM schemes choose to keep states only for some
small number of flows and to appear in a predefined structure.
For example, SFB requires to store the packet count and
dropping probability for each of the bins. SRED and CARE
require storing the packet count in a Zombie list and recently
arrived buffer respectively. RED-PD maintains the dropping
probability for each flow which appears in the monitor list.
Hence, the sizes of these data structures (monitor list, bins,
Zombie list, and recently arrived packets buffer) determine
the complexity of these AQM algorithms. In particular, their
complexity is similar. In addition, since the size of the states
that are needed is small and is upper-bounded, these algorithms
can be easily made to run at a high-speed [3].

In the rest of this section, we give additional analysis that
are pertained to the CARE algorithm.

F. Drop probabilities

The active queue management algorithms inform the sender
about incipient congestion before a buffer overflow happens so
that senders are informed early on and can react accordingly.
By dropping packets before buffers overflow, AQM allows

TABLE VII

COMPLEXITY FOR EACH AQM ALGORITHM.

Name Keep States for State to keep
RED-PD All flows in monitor

list
Dropping Probability

SFB All bins Packet count, drop-
ping probability

SRED All flows in Zombie
list

flow ID

CARE All the flows in the
capture list

flow ID

RED No per-flow informa-
tion is required

N/A

0

0.05

0.1

0.15

0.2

0.25

0.3

0 100 200 300 400 500 600

D
ro

pp
in

g
P

ro
ba

bi
lty

Time

UDP=5%
UDP=10%
UDP=30%

Fig. 12. Drop probabilities of CARE under different loads

routers to control when and how many packets to drop. As
a result, the drop probability is one of the major components
of an active queue management algorithm. In order to study
the response of the CARE algorithm to the different amounts
of traffic loads and/or a sudden increase or decrease of a flows
sending rate, we analyze its drop probability.

The drop probabilities in different networking configuration
are shown in the following figures:

a) In Fig. 12, we have 45 TCP flows and one UDP flow.
For the other settings, we use the configuration in Section V
with different amounts of UDP traffic and different numbers of
capture occasions (T). Fig. 12 shows that CARE has relatively
constant drop probabilities for the different amounts of traffic
loads. As a result, the CARE algorithm exhibits stable drop
probabilities.

b) We also evaluate the robustness of the CARE algorithm
by measuring the dropping probability under variable traffic
loads. Fig. 13 shows the dropping probability of CARE under
a variable number of flows. At time = 0s, we start with 60
TCP flows and 6 UDP flows. At time = 400s, we add 30 more
TCP flows and 6 more UDP flows. Finally, at time = 800s,
we reduced the traffic to 30 TCP flows and 3 UDP flows. The
sending rate for each UDP flows is 3.33% of the bottleneck
link bandwidth. At time = 800s, the drop probability is reduced
sharply due to the decrease of load. This shows that the CARE
algorithm can adapt to the change of traffic load quickly.

10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200 400 600 800 1000 1200

D
ro

pp
in

g
P

ro
ba

bi
lty

Time

dropping probability

Fig. 13. Drop probabilities of CARE under variable loads

0

200

400

600

800

1000

1200

25 30 35 40 45 50 55 60 65 70

N
or

m

Total number of flows

Ideal
RED

T=150
T=200
T=250

Fig. 14. Performance of CARE under different number of capture occasions.

G. Number of captures and frequency of capture occasions

As described previously, the number of captures and the
frequency of capture occasions can affect the overall perfor-
mance of the CARE algorithm. As the capture-recapture model
relies on the information given by the captured packets, more
captures means higher accuracy for the estimation. However,
taking more captures requires more storage space and computa-
tion time. As a result, finding a balance between the number of
captures and the complexity of the algorithm is important. To
illustrate the effect of different numbers of captures occasions
on the overall performance of the CARE, we have performed
the same second set of simulations with different number of
captures occasions. The results are shown in Fig. 14, where

�
is the number of captures occasions used. Fortunately, the

CARE algorithm is not very sensitive to these parameters.
Hence, we can choose the parameters that can suit our own
implementation without affecting the quality of the results.

H. Present of the short-lived flows

To show the estimation using the capture-recapture model
under the present of the short-lived flows, we evaluate the
CARE algorithm with HTTP connectios. In Fig. 15 and Ta-
ble VIII, there are 250 HTTP short-lived connections, 100

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600

E
st

im
at

ed
 n

um
be

r
of

 fl
ow

s

Time

SRED
CARE

TCP+UDP flows

Fig. 15. Estimation of the number of flows under the present of short-lived
flows.

TABLE VIII

NORM VALUES UNDER THE PRESENT OF SHORT-LIVED FLOWS

Algorithm Norm Non-responsive traffic
CARE 92.75 0.095488Mbps
RED 879.4 0.904144Mbps

Blue(SFB) 971.8 0.142832Mbps
SRED 768.8 0.818048Mbps

RED-PD 308.7 0.180096
Ideal 0 0.099010Mbps3

TCP connections, and a UDP connection sending at a rate of
10Mbps. t is set to be 50.

I. Effect of different RTT

We evaluate the algorithms using TCP with different RTTs.
In this experiment, we consider 25 TCP flows and 1 UDP
flows. The propagation for these TCP flows are 0.1ms, 2ms,
4ms, 10ms, and 100ms, such that flow 0 to flow 5 experience a
delay of 0.1ms, and so forth. Fig. 16 shows the result. Although
TCP flows experiencing high propagation delay (flow 20 to
flow 24) are suffer from low throughput under the RED-PD
algorithm, CARE provides improvement for these flows.

J. Multiple congested links

We also evaluate the throughput of different flows when
the flows traverse more than one congested link. A sample
network configuration with multiple congested slinks as shown

3Assumed that the bandwidth of HTTP is not significant

TABLE IX

NORM VALUES UNDER THE PRESENT OF TCP FLOWS WITH DIFFERENT

RTTS.

Algorithm Norm Non-responsive traffic
CARE 114.7 0.408576Mbps
RED 895.7 0.979312Mbps

Blue(SFB) 3341 0.142448Mbps
SRED 888.3 0.949984Mbps

RED-PD 769.4 0.59368Mbps
Ideal 0 0.384615385Mbps

11

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25

T
hr

ou
gh

pu
t(

M
bi

ts
/s

)

Flow number

CARE
RED-PD

Ideal

Fig. 16. Throughput of TCP with different RTTs.

Fig. 17. Network configuration with multiple congested links

in Fig. 17. We set up five routers: router0, router1, core0, core1,
and core2. Links connected between these routers are at the
speed of 10Mbps. Link speed is 100Mbps for the others. To
generate background traffic for the multihop network, 10 nodes
are connected to each core router (core0, core1, and core2)
to form a node group. There are 10 TCP flows going from
node group A and B to node group B and C respectively.
Hence, links between the core routers are congested. There
are also 50 TCP and 1 10Mbps UDP flows sent from the
source nodes to the destination nodes. Finally, we evaluate the
bandwidth received at the destination nodes and show the result
in Table X.

VI. CONCLUSION

In this paper we have introduced the mechanism of applying
the capture-recapture model in active queue managements so
as to determine crucial network resources that are needed to

TABLE X

TRAFFIC RECEIVED UNDER MULTIPLE CONGESTED LINKS

Algorithm Norm
RED 7763.786945

CARE 323.4800886
SFB 1135.714558

SRED 7753.635924
Ideal 0

achieve a fair bandwidth sharing scheme. In particular, we
have illustrated how to use the CR model to estimate the
number of flows and the sending rate of each flow. Then
these values are used for the fair bandwidth allocation among
both the responsive as well the non-responsive flows. Through
extensive simulations, we have demonstrated that our scheme
outperforms related state-of-the-art AQM schemes. In addition,
given the low complexity of this scheme, it is amenable to high-
speed implementation which is crucial for possible deployment
in core routers.

REFERENCES

[1] T. J. Ott, T. V. Lakshman, L. H. Wong, “SRED: Stabilized RED,” IEEE
INFOCOM, March 1999.

[2] R. Morris, “Scalable TCP Congestion Control,” Ph.D. Thesis, Harvard
University, 1998. 111 pages.

[3] R. Mahajan, S. Floyd, D. Wetherall, “Controlling High-Bandwidth Flows
at the Congested Routers,” 9 � � International Conference on Network
Protocols (ICNP), November 2001.

[4] Wu-chang Feng; K.G. Shin; D.D. Kandlur; D. Saha “The blue active
queue management algorithms,” IEEE/ACM Transactions on Networking,
10(4), Aug 2002.

[5] S. Floyd and V. Jacobson, “Random early detection gateways for conges-
tion avoidance,” IEEE/ACM Transactions on Networking, 1(4):397-413,
1993.

[6] J. Nagle, “On Packet Switches with Infinite Storage,” IEEE Transactions
on Communications, Volume 35, pp 435-438, 1987.

[7] A. Demers, S. Keshav, S. Shenker, “Analysis and Simulation of Fair
Queueing algorithms,” ACM SIGCOMM 1989, vol. x.

[8] A. Parekh and R. G. Gallager, “A generalized processor sharing approach
to flow control in integrated services networks: the single node case,”
IEEE/ACM Transactions on Networking, V.1, No 3, pp344-357, (Jun
1993).

[9] G. C. White, D. R. Anderson, K. P. Burnham, and D. L. Otis, “Capture-
recapture and removal methods for sampling closed populations,” Los
Alamos National Laboratory LA-8787-NERP. 235 pp., 1982.

[10] I. Stoica, S. Shenker, H. Zhang, “Core-Stateless Fair Queueing: A
Scalable Architecture to Approximate Fair Bandwidth Allocations in
High Speed Networks,” ACM SIGCOMM 1998, September 1998.

[11] D. Lin and R. Morris, “Dynamics of Random Early Detection,” ACM
SIGCOMM 1997, September 1997.

[12] R. Pan, B. Prabhakar, K. Psounis, “CHOKe, a stateless active queue
management scheme for approximating fair bandwidth allocation,” IEEE
INFOCOM 2000, March 2000.

[13] K. El Emam, O.Laitenberger, “Evaluating capture-recapture models with
two inspectors,” IEEE Transactions on Software Engineering, Volume:
27 Issue: 9, Sept. 2001, page: 851 -864.

[14] L. C. Briand, K. El Emam, B.G. Freimut, O. Laitenberger, “A compre-
hensive evaluation of capture-recapture models for estimating software
defect content,” IEEE Transactions on Software Engineering, Volume:
26 Issue: 6, June 2000, page: 518 -540.

[15] S. A. Vander Wiel, L. G. Votta, “Assessing software designs using
capture-recapture methods,” IEEE Transactions on Software Engineering,
Volume: 19 Issue: 11, Nov. 1993, page: 1045-1054.

[16] K. P. Burnham, W. S. Overton, “Estimation of the size of a closed
population when capture probabilities vary among animals,” Biometriks,
65(3):625-633, 1978.

[17] The Network Simulator - ns-2 version 2.1b8a,
http://www.isi.edu/nsnam/ns

[18] D. Bamdal, and H. Balakridhnan, “Binomial Congestion Control Algo-
rithms,” Proceeding of IEEE INFOCOM 2001, April 2001.

[19] W. Feng, D. Kandlur, D. Saha, K. Shin, “Blue: An Alternative Approach
To Active Queue Management,” in Proc. of NOSSDAV 2001, June 2001.

[20] Deying Tong, A. L. Narasimha Reddy, “QoS enhancement with partial
state,” Seventh International Workshop on Quality of Service, 1999.
IWQoS ’99. Page(s): 87 -96

